Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
Heliyon ; 9(1): e12753, 2023 Jan.
Article in English | MEDLINE | ID: covidwho-2264393

ABSTRACT

Background: Misconceptions about adverse side effects are thought to influence public acceptance of the Coronavirus disease 2019 (COVID-19) vaccines negatively. To address such perceived disadvantages of vaccines, a novel machine learning (ML) approach was designed to generate personalized predictions of the most common adverse side effects following injection of six different COVID-19 vaccines based on personal and health-related characteristics. Methods: Prospective data of adverse side effects following COVID-19 vaccination in 19943 participants from Iran and Switzerland was utilized. Six vaccines were studied: The AZD1222, Sputnik V, BBIBP-CorV, COVAXIN, BNT162b2, and the mRNA-1273 vaccine. The eight side effects were considered as the model output: fever, fatigue, headache, nausea, chills, joint pain, muscle pain, and injection site reactions. The total input parameters for the first and second dose predictions were 46 and 54 features, respectively, including age, gender, lifestyle variables, and medical history. The performances of multiple ML models were compared using Area Under the Receiver Operating Characteristic Curve (ROC-AUC). Results: The total number of people receiving the first dose of the AZD1222, Sputnik V, BBIBP-CorV, COVAXIN, BNT162b2, and mRNA-1273 were 6022, 7290, 5279, 802, 277, and 273, respectively. For the second dose, the numbers were 2851, 5587, 3841, 599, 242 and 228. The Logistic Regression model for predicting different side effects of the first dose achieved ROC-AUCs of 0.620-0.686, 0.685-0.716, 0.632-0.727, 0.527-0.598, 0.548-0.655, 0.545-0.712 for the AZD1222, Sputnik V, BBIBP-CorV, COVAXIN, BNT162b2 and mRNA-1273 vaccines, respectively. The second dose models yielded ROC-AUCs of 0.777-0.867, 0.795-0.848, 0.857-0.906, 0.788-0.875, 0.683-0.850, and 0.486-0.680, respectively. Conclusions: Using a large cohort of recipients vaccinated with COVID-19 vaccines, a novel and personalized strategy was established to predict the occurrence of the most common adverse side effects with high accuracy. This technique can serve as a tool to inform COVID-19 vaccine selection and generate personalized factsheets to curb concerns about adverse side effects.

2.
Comput Struct Biotechnol J ; 20: 5564-5573, 2022.
Article in English | MEDLINE | ID: covidwho-2061048

ABSTRACT

Viral infections represent a major health concern worldwide. The alarming rate at which SARS-CoV-2 spreads, for example, led to a worldwide pandemic. Viruses incorporate genetic material into the host genome to hijack host cell functions such as the cell cycle and apoptosis. In these viral processes, protein-protein interactions (PPIs) play critical roles. Therefore, the identification of PPIs between humans and viruses is crucial for understanding the infection mechanism and host immune responses to viral infections and for discovering effective drugs. Experimental methods including mass spectrometry-based proteomics and yeast two-hybrid assays are widely used to identify human-virus PPIs, but these experimental methods are time-consuming, expensive, and laborious. To overcome this problem, we developed a novel computational predictor, named cross-attention PHV, by implementing two key technologies of the cross-attention mechanism and a one-dimensional convolutional neural network (1D-CNN). The cross-attention mechanisms were very effective in enhancing prediction and generalization abilities. Application of 1D-CNN to the word2vec-generated feature matrices reduced computational costs, thus extending the allowable length of protein sequences to 9000 amino acid residues. Cross-attention PHV outperformed existing state-of-the-art models using a benchmark dataset and accurately predicted PPIs for unknown viruses. Cross-attention PHV also predicted human-SARS-CoV-2 PPIs with area under the curve values >0.95. The Cross-attention PHV web server and source codes are freely available at https://kurata35.bio.kyutech.ac.jp/Cross-attention_PHV/ and https://github.com/kuratahiroyuki/Cross-Attention_PHV, respectively.

3.
Knowl Based Syst ; 253: 109539, 2022 Oct 11.
Article in English | MEDLINE | ID: covidwho-1966919

ABSTRACT

Alongside the currently used nasal swab testing, the COVID-19 pandemic situation would gain noticeable advantages from low-cost tests that are available at any-time, anywhere, at a large-scale, and with real time answers. A novel approach for COVID-19 assessment is adopted here, discriminating negative subjects versus positive or recovered subjects. The scope is to identify potential discriminating features, highlight mid and short-term effects of COVID on the voice and compare two custom algorithms. A pool of 310 subjects took part in the study; recordings were collected in a low-noise, controlled setting employing three different vocal tasks. Binary classifications followed, using two different custom algorithms. The first was based on the coupling of boosting and bagging, with an AdaBoost classifier using Random Forest learners. A feature selection process was employed for the training, identifying a subset of features acting as clinically relevant biomarkers. The other approach was centered on two custom CNN architectures applied to mel-Spectrograms, with a custom knowledge-based data augmentation. Performances, evaluated on an independent test set, were comparable: Adaboost and CNN differentiated COVID-19 positive from negative with accuracies of 100% and 95% respectively, and recovered from negative individuals with accuracies of 86.1% and 75% respectively. This study highlights the possibility to identify COVID-19 positive subjects, foreseeing a tool for on-site screening, while also considering recovered subjects and the effects of COVID-19 on the voice. The two proposed novel architectures allow for the identification of biomarkers and demonstrate the ongoing relevance of traditional ML versus deep learning in speech analysis.

4.
JTCVS Open ; 11: 214-228, 2022 Sep.
Article in English | MEDLINE | ID: covidwho-1873332

ABSTRACT

Objective: We sought to several develop parsimonious machine learning models to predict resource utilization and clinical outcomes following cardiac operations using only preoperative factors. Methods: All patients undergoing coronary artery bypass grafting and/or valve operations were identified in the 2015-2021 University of California Cardiac Surgery Consortium repository. The primary end point of the study was length of stay (LOS). Secondary endpoints included 30-day mortality, acute kidney injury, reoperation, postoperative blood transfusion and duration of intensive care unit admission (ICU LOS). Linear regression, gradient boosted machines, random forest, extreme gradient boosting predictive models were developed. The coefficient of determination and area under the receiver operating characteristic (AUC) were used to compare models. Important predictors of increased resource use were identified using SHapley summary plots. Results: Compared with all other modeling strategies, gradient boosted machines demonstrated the greatest performance in the prediction of LOS (coefficient of determination, 0.42), ICU LOS (coefficient of determination, 0.23) and 30-day mortality (AUC, 0.69). Advancing age, reduced hematocrit, and multiple-valve procedures were associated with increased LOS and ICU LOS. Furthermore, the gradient boosted machine model best predicted acute kidney injury (AUC, 0.76), whereas random forest exhibited greatest discrimination in the prediction of postoperative transfusion (AUC, 0.73). We observed no difference in performance between modeling strategies for reoperation (AUC, 0.80). Conclusions: Our findings affirm the utility of machine learning in the estimation of resource use and clinical outcomes following cardiac operations. We identified several risk factors associated with increased resource use, which may be used to guide case scheduling in times of limited hospital capacity.

5.
EClinicalMedicine ; 42: 101212, 2021 Dec.
Article in English | MEDLINE | ID: covidwho-1540603

ABSTRACT

BACKGROUND: Identifying and testing individuals likely to have SARS-CoV-2 is critical for infection control, including post-vaccination. Vaccination is a major public health strategy to reduce SARS-CoV-2 infection globally. Some individuals experience systemic symptoms post-vaccination, which overlap with COVID-19 symptoms. This study compared early post-vaccination symptoms in individuals who subsequently tested positive or negative for SARS-CoV-2, using data from the COVID Symptom Study (CSS) app. METHODS: We conducted a prospective observational study in 1,072,313 UK CSS participants who were asymptomatic when vaccinated with Pfizer-BioNTech mRNA vaccine (BNT162b2) or Oxford-AstraZeneca adenovirus-vectored vaccine (ChAdOx1 nCoV-19) between 8 December 2020 and 17 May 2021, who subsequently reported symptoms within seven days (N=362,770) (other than local symptoms at injection site) and were tested for SARS-CoV-2 (N=14,842), aiming to differentiate vaccination side-effects per se from superimposed SARS-CoV-2 infection. The post-vaccination symptoms and SARS-CoV-2 test results were contemporaneously logged by participants. Demographic and clinical information (including comorbidities) were recorded. Symptom profiles in individuals testing positive were compared with a 1:1 matched population testing negative, including using machine learning and multiple models considering UK testing criteria. FINDINGS: Differentiating post-vaccination side-effects alone from early COVID-19 was challenging, with a sensitivity in identification of individuals testing positive of 0.6 at best. Most of these individuals did not have fever, persistent cough, or anosmia/dysosmia, requisite symptoms for accessing UK testing; and many only had systemic symptoms commonly seen post-vaccination in individuals negative for SARS-CoV-2 (headache, myalgia, and fatigue). INTERPRETATION: Post-vaccination symptoms per se cannot be differentiated from COVID-19 with clinical robustness, either using symptom profiles or machine-derived models. Individuals presenting with systemic symptoms post-vaccination should be tested for SARS-CoV-2 or quarantining, to prevent community spread. FUNDING: UK Government Department of Health and Social Care, Wellcome Trust, UK Engineering and Physical Sciences Research Council, UK National Institute for Health Research, UK Medical Research Council and British Heart Foundation, Chronic Disease Research Foundation, Zoe Limited.

6.
Comput Struct Biotechnol J ; 19: 2833-2850, 2021.
Article in English | MEDLINE | ID: covidwho-1240272

ABSTRACT

The worldwide health crisis caused by the SARS-Cov-2 virus has resulted in>3 million deaths so far. Improving early screening, diagnosis and prognosis of the disease are critical steps in assisting healthcare professionals to save lives during this pandemic. Since WHO declared the COVID-19 outbreak as a pandemic, several studies have been conducted using Artificial Intelligence techniques to optimize these steps on clinical settings in terms of quality, accuracy and most importantly time. The objective of this study is to conduct a systematic literature review on published and preprint reports of Artificial Intelligence models developed and validated for screening, diagnosis and prognosis of the coronavirus disease 2019. We included 101 studies, published from January 1st, 2020 to December 30th, 2020, that developed AI prediction models which can be applied in the clinical setting. We identified in total 14 models for screening, 38 diagnostic models for detecting COVID-19 and 50 prognostic models for predicting ICU need, ventilator need, mortality risk, severity assessment or hospital length stay. Moreover, 43 studies were based on medical imaging and 58 studies on the use of clinical parameters, laboratory results or demographic features. Several heterogeneous predictors derived from multimodal data were identified. Analysis of these multimodal data, captured from various sources, in terms of prominence for each category of the included studies, was performed. Finally, Risk of Bias (RoB) analysis was also conducted to examine the applicability of the included studies in the clinical setting and assist healthcare providers, guideline developers, and policymakers.

7.
Chaos Solitons Fractals ; 140: 110212, 2020 Nov.
Article in English | MEDLINE | ID: covidwho-720454

ABSTRACT

COVID-19, responsible of infecting billions of people and economy across the globe, requires detailed study of the trend it follows to develop adequate short-term prediction models for forecasting the number of future cases. In this perspective, it is possible to develop strategic planning in the public health system to avoid deaths as well as managing patients. In this paper, proposed forecast models comprising autoregressive integrated moving average (ARIMA), support vector regression (SVR), long shot term memory (LSTM), bidirectional long short term memory (Bi-LSTM) are assessed for time series prediction of confirmed cases, deaths and recoveries in ten major countries affected due to COVID-19. The performance of models is measured by mean absolute error, root mean square error and r2_score indices. In the majority of cases, Bi-LSTM model outperforms in terms of endorsed indices. Models ranking from good performance to the lowest in entire scenarios is Bi-LSTM, LSTM, GRU, SVR and ARIMA. Bi-LSTM generates lowest MAE and RMSE values of 0.0070 and 0.0077, respectively, for deaths in China. The best r2_score value is 0.9997 for recovered cases in China. On the basis of demonstrated robustness and enhanced prediction accuracy, Bi-LSTM can be exploited for pandemic prediction for better planning and management.

SELECTION OF CITATIONS
SEARCH DETAIL